IV&V of a Space Robotic Mission's Fault Protection System (Presented and published at AIAA)

Mike Choppa, MSIS
Shirley Savarino, TASC
Frank Huy, NASA

Introduction

- Review IV&V challenges and architectures
- Describe an actual FP architecture and IV&V challenges
- IV&V approaches
 - Monitor Mining
 - Database
- Results and Benefits

Fault Protection – IV&V Challenges

- Last defense prior to loss of mission
- Often, complexity of fault management system correlates to autonomy required by mission type
 - Deep Space and Interplanetary typically require more autonomy than earth observing mission
 - Time-to-criticality also plays a role GN&C maneuvers have more criticality than operation during a standard orbit
- Fault Protection subsystem is routinely ranked as critical for IV&V analyses
- Scope for IV&V
 - Fault Analysis (safety)
 - Fault Detection, Identification and Response (dependability)

Fault Protection Architecture Types

Fault Protection Architecture Approaches – Advantages and Disadvantages

Type	Description	Advantages	Disadvantages
Centralized	Fault detection monitors and fault responses are located in the primary processor or a single software code unit	Allow for the use of table driven monitors and/or responses. Fault protection verification activities are concentrated to a single implementing subsystem.	Fault detection and responses may be implemented in units removed from the source of the fault, potentially introducing additional failure paths.
Distributed	Fault detection monitors and responses distributed amongst software code units or hardware units.	Allow the fault monitors or fault detection algorithms to be located more closely to the	Fault protection implementation activities are distributed amongst the subsystems, increasing complexity.
Hybrid	Distributed architecture for fault detection monitors and local responses, combined with a centralized fault response		Complexity is increased over either approach. Fault protection implementation activities are distributed across localized and centralized entities.

Mars Science Laboratory – Fault Protection Overview

- Leaving for Mars in November, 2011
- Arrives at Mars in August 2012 for a two year surface mission
- Fault protection
 - Uses a hybrid architecture
 - Over 1500 fault monitors with local and system responses
 - Tiered responses (second monitor and associated response if first tier doesn't work correctly)
- Implementation
 - Requirements/design implemented across35 Functional Design Documents
 - Distributed implementation in code

Hybrid Fault Protection Architecture Implementation Approach

IV&V Monitor Mining Tasks - Approaches

Monitor Mining (FDDs, Code)

Objective:

- Within iDDs, line up requirements, fault scenarios, monitors and responses (system and local), evaluate for goodness
- Mine code for monitor implementation

Approach: Manual extraction and

alignment

Summary: identified inconsistent approaches within FDDs, monitors with no responses, incomplete requirements, etc Code work in progress.

FDD Monitors –
SFP Compare
-- Code
Implementation

Monitor Database

Objective: Ensure SFP identified monitors are being generated at local level and FDD indicated SFP used monitors are used by SFP

Assess consistency in the code

<u>Approach</u>: Automated matches
(mnemonics), followed by manual
matches

Summary: Identification of orphans and inconsitencies

Objective: Detangle distributed (across artifacts and time) nature of monitors and responses

Approach: Access Database

Summary: Facilitates ongoing analysis (e.g. code trace, new FDDs, change impact

and test analysis)

IV&V Monitor Mining Process, Results

Category	Description	
IV&V	• Search the entire FDD for keywords - fault, monitor, response	
Monitor	 Review diagrams for fault monitors and responses 	
Mining	• Verify implementation of monitors/responses in code (using	
Work	requirements/design)	
Instruction		
S		
IV&V	 Missing fault management requirements and/or responses 	
Monitor	• Incomplete requirements in describing fault scenarios	
Mining	• Requirements with no fault monitor/response	
Result	• Unclear response descriptions - local or system response	
Types	• Code implementation is missing local response or has additional	
	steps beyond design description	
	• Code implementation has missing/incomplete event reports	
	• System fault protection handoff in code is incomplete/incorrect	

IV&V Monitor Mining Observations

Category	Description		
Observations	• Lexicon: SFP FDD and code uses mnemonics, but subsystem FDDs do not in any consistent		
resulting from	fashion. In some cases, monitors are not explicitly named (though fault conditions and		
the IV&V	responses are provided)		
Monitor	- Lack of a consistent lexicon across documentation meant that judgment needed to be		
Mining	applied as to 1) whether a response was truly a fault response or just defensive		
	programming, and 2) uncertainty in the results (though we reviewed and reviewed our		
	work to reduce errors to extent possible)		
	• Different approaches to FP were applied across the FDDs. Faults and associated response		
	descriptions varied across the project. The tables and spreadsheets had the most logical		
	presentations. In some cases faults were only provided in PDF pictures. In other cases, we		
	inferred faults due to telemetry provided		

Monitor Mining Database Entity Relationship Diagram

Monitor Mining Database Benefits

Description	Benefit
Consistency	• Database structure ensures capturing data in a consistent manner
Queries	• Rather than using Excel sorts and filters, database queries can be
	employed, with results provided in a report
Reports, Input	 Reports capture data in any manner desired
Forms	• Different reports/input forms can be employed by different analysts
	as long as the same data is captured
Agility and	• Greatly improved over spreadsheet approach - this was perhaps the
speed of	most important and quickly realized benefit once the monitor
manipulating	mining database was operational
data	• Database allows IV&V to capture analysis and provide reports of
	remaining efforts.
	• During analysis, identification of exceptions (issues) are facilitated
	by database queries
	• Database enables IV&V to focus on the analysis tasks vs. the data
e 12 8/17/2011	manipulation efforts

Database demo

Demo

- 1: Monitor Input form
- **2: Monitor Report form**
- **3: Monitor queries**

Features

- Began in Oct 2010, prototyped in Jan 2011, operational in May 2011
- Central repository for monitor information.
- Has been used for IV&V purposes and reports are used to communicate to the MSL Project